Low Temperature Operation of Methanation Catalyst At RCF-Thal

Presentation By,

R.N.KHEMANI,
Deputy General Manager, Technical Services and Environment, RCF Thal
Welcomes

Delegates present for Ammonia Catalyst Seminar 2016
Overview of RCF

Govt. of India Undertaking, Incorporated in 1978 with the re-organisation of erstwhile FCI. It is a Miniratna company.

80 % GOI holding

Two units – Trombay
 – Thal

Trombay and Thal units certified under IMS (QMS, EMS & OHSAS)

MoU signing with GOI since 1988.
Rated excellent since 2002-03
RCF Trombay Unit
(Products & Yearly Capacity)

- Urea (3.3 LMT)
- Suphala (15:15:15) (4.2 LMT)
- Suphala (20:20:0) (2.7 LMT)
- Sujala (0.06 LMT)
- Biola (150 KL)
- Microla (450 KL)

- Ammonia (4.13 LMT)
- Nitric Acid (3.63 LMT)
- Methanol (0.70 LMT)
- Methyl Amine (0.052 LMT)
- Ammonium Bicarbonate (0.25 LMT)
- Sodium Nitrite/Nitrate (0.052 LMT)

- Sulphuric Acid (0.99 LMT)
- Phosphoric Acid (0.33 LMT)
RCF Thal Unit
(Products & Yearly Capacity)

Urea
(20 LMT)

Ammonia
(11.55 LMT)

Formic Acid
(0.1 LMT)

DMAc
(0.05 LMT)

Methyl Amine
(0.11 LMT)

DMF
(0.025 LMT)

Argon
(0.14 LMT)
RCF Thal: Background

- First Mega Fertilizer unit set up using Natural gas from Bombay high.

- Commissioned in 1984-85.

- First Fertilizer Unit in India with Distributed Control System (DCS)
Ammonia Process at RCF-Thal

• The Process is based on Steam Reforming of Natural gas.

• Technology is supplied by M/s HTAS Denmark.
Catalysts Used in Ammonia Plants

- Hydrogenation of NG: NiMox
- Desulphurization: ZnO
- Reforming: NiO on Alumina
- HT CO Conversion: Fe$_2$O$_3$, Cr$_2$O$_3$
- MT & LT CO Conversion: CuO, ZnO
- Methanator: NiO on Alumina
- Ammonia Synthesis: Fe$_3$O$_4$
Ammonia Plant, RCF Thal

Technology : Haldor Topsoe
Design Capacity : 2 x 1750 = 3500 MTPD
Improvement Schemes at RCF-Thal Unit

1. **1984-85**: Initial set up.
 - Ammonia Plants: 2x1350 MTPD
 - Initial Ammonia energy: 9.5 Gcal/MT

2. **1996-98**: Ammonia Revamp scheme
 - Capacity increased to 2x1500 MTPD.
 - Energy of Ammonia reduced from 9.5 Gcal/MT to 8.9 Gcal/MT.

 - Due to shortage of NG, Ammonia feed converted 50% on Naphtha & 50% on NG.
4. **2011-12**: Ammonia Revamp scheme

- Increased Ammonia production capacity to $2 \times 1750 = 3500$ MTPD

- Ammonia Energy reduction by 0.75 Gcal/MT.
RCF Thal Plant Performance
(Current vis-à-vis Initial)

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Initial (1984-85)</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia Production</td>
<td>MTPD</td>
<td>2700</td>
<td>3800</td>
</tr>
<tr>
<td>Ammonia Energy</td>
<td>Gcal/MT</td>
<td>9.5</td>
<td>8.15</td>
</tr>
<tr>
<td>Urea Production</td>
<td>MTPD</td>
<td>4500</td>
<td>6200</td>
</tr>
<tr>
<td>Urea Energy</td>
<td>Gcal/MT</td>
<td>7.5</td>
<td>5.8</td>
</tr>
</tbody>
</table>
Ongoing Energy Reduction Plan at RCF Thal

- Replacing existing Steam Turbo Generators by Gas Turbo Generators with HRSG for power & steam production.

- Total estimated Gas saving - 0.25 MMSCMD

- Ammonia Energy reduction from 8.12 Gcal/MT to 7.7 Gcal/MT.

- Urea Energy reduction from 5.8 to 5.45 Gcal/MT.
Methanation Process

• The carbon oxides (CO and CO2) are severe poisons to the ammonia synthesis catalyst.

• Methanation is the final part of the gas purification, where residual carbon oxides are converted into methane, which acts as an inert gas in the ammonia synthesis loop.

• Nickel based catalyst is used for methanation.
Methanation Reactions

- Reactions:
 \[\text{CO} + 3\text{H}_2 \rightleftharpoons \text{CH}_4 + \text{H}_2\text{O} \quad \Delta H = -206 \text{ KJ/mol} \]
 \[\text{CO}_2 + 4\text{H}_2 \rightleftharpoons \text{CH}_4 + 2\text{H}_2\text{O} \quad \Delta H = -165 \text{ KJ/mol} \]

Methanation Reactions are highly exothermic
- +75°C for every 1% CO converted
- +60°C for every 1% CO2 converted
Mechanism of Methanation Reactions

- The reactions are governed by kinetics
- CO inhibits methanation of CO2
- Two stage reaction:
 - CO2 reverse-shifts to CO
 \[\text{CO}_2 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2\text{O} \]
 - CO converted to methane
 \[\text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O} \]
Design Parameters of Low Temperature Methanation Process

<table>
<thead>
<tr>
<th>Process Parameters</th>
<th>Unit</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Temp</td>
<td>°C</td>
<td>265</td>
</tr>
<tr>
<td>Outlet Temp</td>
<td>°C</td>
<td>289</td>
</tr>
<tr>
<td>Inlet Pressure</td>
<td>Kg/cm²g</td>
<td>26</td>
</tr>
<tr>
<td>Outlet Pressure</td>
<td>Kg/cm²g</td>
<td>25.8</td>
</tr>
<tr>
<td>CO-CO₂ inlet</td>
<td>Mole %</td>
<td>CO - 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO₂ - 0.11</td>
</tr>
<tr>
<td>CO-CO₂ outlet</td>
<td>ppm</td>
<td>CO : 0-0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO₂ : 0.05-0.2</td>
</tr>
</tbody>
</table>
RCF: Process Requirements

CO+ CO2 at the exit is required to be < 1 ppm

Reasons for low exit CO/CO2:

- Synthesis gas is sent to Thal Ammonia Extension Plant (TAE). CO and CO2 slip if more than 1 ppm leads to choking in process and causes plant load limitation.

- CO and CO2 slip if more than 10 ppm results into poisoning of catalyst in Ammonia Synthesis Converter.
Advantages of Low Temperature Methanation

- Low temperature and high pressure tends to favour the equilibrium conversion.
- Low inlet temperature increases steam production in Converted Gas Boiler thus reducing energy consumption.
- Low outlet temperature reduces loss of heat to cooling tower and reduces load on cooling tower.
- After ageing, inlet temperature has to be increased to increase catalyst activity. Hence low inlet temperature operation initially gives flexibility for increasing temperature as the catalyst ages.
Catalyst Type Used: Meth 135 /C-13-03 by M/s Sudchemie India limited

Chemical Composition

- Nickel: 34.0 ± 2.0 (%wt)
- Alumina: Balance (%wt)

Physical Properties Specifications

- Form/Shape: 3.0-6.0 mm Spheres
- Average Crush Strength: ≥ 6.8 Kg
- Shipping Density: 0.95 ± 0.1 Kg/l
Methanation Catalyst Reactor

Gas from CO2 removal section

Inlet composition (Dry mole %)
- Ar : 0.31
- CH4 : 0.49
- CO : 0.21
- CO2 : 0.11
- H2 : 73.44
- N2 : 25.44

Outlet composition (Dry mole %)
- Ar : 0.31
- CH4 : 1.18
- CO : 0 to 0.08 ppm
- CO2 : 0.05 to 0.2 ppm
- H2 : 94.14
- N2 : 5.71

Height of both catalyst beds is 2650 mm each and diameter is 3800 mm

100 mm layer of ½” alumina balls

265 °C

289 °C

Process gas to ammonia synthesis loop
Catalyst Life

Catalyst in operation since:

- Amm-I: April 2007
- Amm-II: November 2011
Catalyst Performance
(Design vs. Actual)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Design</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reformer Gas Load</td>
<td>TNCH</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Inlet CO</td>
<td>Mole %</td>
<td>0.21</td>
<td>0.225</td>
</tr>
<tr>
<td>Inlet CO2</td>
<td>Mole %</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>Inlet Temp</td>
<td>°C</td>
<td>298</td>
<td>265</td>
</tr>
<tr>
<td>Outlet Temp</td>
<td>°C</td>
<td>315</td>
<td>289</td>
</tr>
<tr>
<td>Exit CO/CO2</td>
<td>ppm</td>
<td>< 1 (CO+CO2)</td>
<td>CO : 0-0.08 CO2: 0.05-0.2</td>
</tr>
<tr>
<td>Pressure drop</td>
<td>Kg/cm²</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Conclusion

Overall satisfactory performance of Sudchemie make low temperature methanation catalyst w.r.t

• High Activity at inlet temperature of 260-270°C.

• CO/CO2 slip less than 1 ppm.

• High crush strength.

• Faster start up.