Süd-Chemie Catalyst Seminar 2016

Enhanced portfolio of Purification Catalysts

Aravind Narayananam
30th Sept 2016
Overview
- Feed Purification Catalyst Portfolio

Improvements & best practices
- Hydrodesulphurisation Catalyst (HDS): **HDMax series**
- Chloride Guard: **ActiSorb Cl2**
- Sulfur Guard: **ActiSorb S2**
- Dual function HDS cum Sulfur Guard: **ActiSorb G-1**

New Developments
- ActiSorb G1M
- ActiSorb G1ML
- ActiSorb GP 105

Case Study: Kanpur Fertilizers & Cement Ltd (KFCL)
Feed Purification Catalysts

Hydrodesulphurisation (HDS)
(CoMo / NiMo)

Chloride Guard
(Na promoted Alumina)

Sulfur Guard
(Zinc Oxide)
Is it important to have good Purification Catalysts?
Goals for Purification Catalysts

– Avoid unplanned shutdowns due to catalyst poisoning
– Protect & Improve life of downstream catalysts
– Extend life of Primary Reformer Tubes
Catalyst Poisons

1. Sulfur
2. Chlorides
3. Olefins

All 3 components should strictly be part of standard specifications from your NG / Naphtha supplier.
Agenda

Overview
- Feed Purification Catalyst Portfolio

Improvements & best practices
- Hydrodesulphurisation Catalyst (HDS): **HDMax series**
- Chloride Guard: **ActiSorb Cl2**
- Sulfur Guard: **ActiSorb S2**
- Dual function HDS cum Sulfur Guard: **ActiSorb G-1**

New Developments
- ActiSorb G1M
- ActiSorb G1ML
- ActiSorb GP 105

Case Study: Kanpur Fertilizers & Cement Ltd (KFCL)
Hydrodesulphurisation (HDS)

- **Key functions**
 - Converts organic Sulfur to H_2S
 - Converts organic chlorides to HCl
 - Saturates olefins (with sufficient recycle H_2)
 - Traps metallic impurities

- **Sulfiding**
 - NG with 2-10 ppmv of sulfur, no pre-sulfiding required
 - Olefins in the feed – pre-sulfiding is recommended
 - Naphtha feeds – pre-sulphiding is recommended
HDS: Goals for new catalyst

HDMax 200 / 250 (CoMo) HDMax 300 /350 (NiMo)

Goals for new HDS catalyst development:

- Significantly lower pressure drop
- Same or higher activity
- Robust with high Crushing Strength & Attrition resistance
HDS: New Development
HDMax 200 HR: 5 x 2.5 Rings

Key advantages (compared to extrusions)

👍 > 50% reduction in pressure drop

👍👍 > 10% higher activity – needs lesser catalyst quantity

👍👍 Crushing Strength & Attrition resistance similar or higher
Overview

- Feed Purification Catalyst Portfolio

Improvements & best practices

- Hydrodesulphurisation Catalyst (HDS): **HDMax series**
- Chloride Guard: **ActiSorb Cl2**
- Sulfur Guard: **ActiSorb S2**
- Dual function HDS cum Sulfur Guard: **ActiSorb G-1**

New Developments

- ActiSorb G1M
- ActiSorb G1ML
- ActiSorb GP 105

Case Study: Kanpur Fertilizers & Cement Ltd (KFCL)
Chloride Guard– ActiSorb® Cl2

Why is this important?

- HCl reacts with downstream ZnO catalyst & forms ZnCl2 which sublimes at > 260 deg C
- Causes issues with Reforming catalyst & extreme level of poisoning to Low Temperature Shift catalysts.
- Ammonia industry has experienced severe chloride poisoning in the past
- As a best practice, we recommend using Chloride Guard as overlay on top of ZnO Sulfur Guard
Overview
 - Feed Purification Catalyst Portfolio

Improvements & best practices
 - Hydrodesulphurisation Catalyst (HDS): HDMax series
 - Chloride Guard: ActiSorb Cl2
 - Sulfur Guard: ActiSorb S2
 - Dual function HDS cum Sulfur Guard: ActiSorb G-1

New Developments
 - ActiSorb G1M
 - ActiSorb G1ML
 - ActiSorb GP 105

Case Study: Kanpur Fertilizers & Cement Ltd (KFCL)
Sulfur Guard: ActiSorb® S2

\[\text{H}_2\text{S}_{(g)} + \text{ZnO}_{(s)} \rightleftharpoons \text{ZnS}_{(s)} + \text{H}_2\text{O}_{(v)} \]

- An ABSORBENT, not a catalyst
- ZnO is consumed by \(\text{H}_2\text{S} \) containing gas
- Typical outlet sulfur 0.05 - 0.1 ppm
- Peak performance (pick-up capacity) at > 340 deg C

Key aspects in selection of ZnO sulfur Guard:

- High purity virgin ZnO raw material is required – otherwise leads slow but permanent poisoning of Pre-/ Primary Reformer catalyst
- Myth: Higher ZnO content – doesn’t always mean it is a better adsorbent
- High Surface Area for better kinetics of sulfur absorption
High Vs. Low Surface Area
ActiSorb® S2

Advantages of ActiSorb S2:

• Latest generation with High Surface Area ➔ Higher pick-up capacity
• Super high purity ZnO raw material is used
• Available in various ZnO concentrations & Bulk Densities
Options for optimization of Desulphurization Section

Option-1: Optimised Flowsheet (NG feeds)

Diagram showing the flowsheet with NG feeds, HDS, ZnO, ZnO.
Options for optimization of Desulphurization Section

Option-1: Optimised Flowsheet (NG feeds)
Options for optimization of Desulphurization Section

Option-2: Optimised Flowsheet (NG feeds)

Saves pressure drop of separate HDS converter, but HDS may not be optimally utilized

If there is no lead lag arrangement, 2nd reactor doesn’t need HDS
Overview
- Feed Purification Catalyst Portfolio

Improvements & best practices
- Hydrodesulfurisation Catalyst (HDS): HDMax series
- Chloride Guard: ActiSorb Cl2
- Sulfur Guard: ActiSorb S2
- Dual function HDS cum Sulfur Guard: ActiSorb G-1

New Developments
- ActiSorb G1M
- ActiSorb G1ML
- ActiSorb GP 105

Case Study: Kanpur Fertilizers & Cement Ltd (KFCL)
Introduction to ActiSorb G-1

ActiSorb G1 is a brilliant dual function catalyst:

Function-1: Hydrogenation of organic sulfur in the presence of H2
(similar to CoMo / NiMo HDS catalysts)

Function-2: Absorption of H2S & COS

All this in a single bed!

Catalyst Properties:

- CuO: 1.5%
- MoO3: 3.5%
- ZnO: Balance
- Bulk Density: 1.2 - 1.3 kg/l

These unique characteristics unlocks possibilities for several new process flow schemes for purification section.
Unique attributes of G1

- Ideal for Natural Gas with low Sulfur: < 20 ppm
- Sulfur pick-up as high as with Zinc Oxide
- Maintains Hydrogenation activity even without Sulfur
- No pre-sulphiding required & can startup without H$_2$
- Highly recommended for fine polishing with COS in feed
- Drop-in replacement in ZnO beds, absolutely no other changes required
Eliminates need for separate HDS

- By-pass HDS: Save pressure drop of 0.2 – 0.3 kg/cm²
- Differential cost between ActiSorb G-1 & ZnO is paid-off in < 1 year
Eliminates need for separate HDS

Low cost alternative for low H2S containing feeds (< 5 ppm)
Deep Desulphurisation

ActiSorb S6

Heavy duty fine polishing Sulfur Adsorbent

Highly recommended upstream of Pre-reformer catalyst

- ActiSorb S6 brings ‘S’ < 10 ppb
- Very high concentration of Cu
- Removes COS, H2S and light organic sulfur
- Needs reduction before use
- Improves Pre-Reformer & LTS life
Agenda

Overview
- Feed Purification Catalyst Portfolio

Improvements & best practices
- Hydrodesulphurisation Catalyst (HDS): HDMax series
- Chloride Guard: ActiSorb Cl2
- Sulfur Guard: ActiSorb S2
- Dual function HDS cum Sulfur Guard: ActiSorb G-1

New Developments
- ActiSorb G1M
- ActiSorb G1ML
- ActiSorb GP 105

Case Study: Kanpur Fertilizers & Cement Ltd (KFCL)
Issues with Lean & Rich NG

Do you have performance issues when feed is switched between lean NG to rich NG? Do you analyse Sulfur on regular basis?

ActiSorb G1 ML:

- Recommended when there is fluctuating / undetected levels of Organic Sulphur along with H2S
- Rich /Lean NG feeds
- Does not need in-situ reduction
- Enhances life of LTS catalyst
- Drop in replacement for ZnO

Rich / Lean NG

HDS

G1 ML

G1 ML

Mild Copper based
ActiSorb G-1 ML
Issues with Lean & Rich NG

High performance grade for plants using multiple feeds

ActiSorb G1M:

- High copper version of G1 ML
- For fine polishing of H2S & Organic Sulfur heavier feeds
- Does not need in-situ reduction
- Enhances life of LTS catalyst
- Drop in replacement for ZnO
Breakthrough Innovation in Sulfur Absorbents

ActiSorb GP105

ActiSorb S2
Breakthrough Innovation in Sulfur Removal: ActiSorb GP105

Completely new approach for Desulphurisation @ ambient temperature

ActiSorb GP105:
- Ambient temperature operation
- Extremely high pick-up capacity
- Sulfur slips of < 0.05 ppm
- Non-regenerable, but very long life
- Saves energy / Plot Size & Capex for new projects
Overview
- Feed Purification Catalyst Portfolio

Improvements & best practices
- Hydrodesulphurisation Catalyst (HDS): HDMax series
- Chloride Guard: ActiSorb Cl2
- Sulfur Guard: ActiSorb S2
- Dual function HDS cum Sulfur Guard: ActiSorb G-1

New Developments
- ActiSorb G1M
- ActiSorb G1ML
- ActiSorb GP 105

Case Study: Kanpur Fertilizers & Cement Ltd (KFCL)
Case Background

• Operating on Naphtha feed
• HDS (CoMo) + ZnO design basis
Revamp to NG feed

- Operating on NG
- HDS (CoMo) emptied & ZnO replaced with G-1
Performance Comparison

<table>
<thead>
<tr>
<th>INITIAL CONFIGURATION (Before Revamp)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S in Feed</td>
<td>100 ppmv</td>
</tr>
<tr>
<td>HDS Status</td>
<td>Inline</td>
</tr>
<tr>
<td>Pressure drop of system</td>
<td>0.5 kg/cm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FINAL CONFIGURATION (After Revamp)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S in Feed</td>
<td>10 ppmv</td>
</tr>
<tr>
<td>HDS Status</td>
<td>reactor empty</td>
</tr>
<tr>
<td>Pressure drop of system</td>
<td>0.2 kg/cm²</td>
</tr>
<tr>
<td>Expected life of ActiSorb G1</td>
<td>>3 years</td>
</tr>
<tr>
<td>Life achieved till date</td>
<td>3.5 years</td>
</tr>
</tbody>
</table>

ActiSorb G-1 is installed in all 3 lines of Ammonia plant
Summary

- Predominantly most Ammonia are operating on NG, needs fresh approach for Purification flowsheet
- HDS New Development: HDMax® 200 HR – Low pressure drop & High Activity
- Various option for Sulfur Removal:

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiSorb S2</td>
<td>Workhorse ZnO based H2S Adsorbent</td>
</tr>
<tr>
<td>ActiSorb G-1</td>
<td>Dual function HDS Cum Sulfur Guard</td>
</tr>
<tr>
<td>ActiSorb S6</td>
<td>Deep Desulphurisation - Recommended upstream of pre-reformers</td>
</tr>
<tr>
<td>ActiSorb G-1ML</td>
<td>Operation with Rich & Lean NG feeds</td>
</tr>
<tr>
<td>ActiSorb G-1M</td>
<td>Plants using multiple feeds (Incl. Naphtha) & history of sulfur issues</td>
</tr>
<tr>
<td>ActiSorb GP105</td>
<td>Breakthrough Innovation: Ambient temperature Sulfur Removal</td>
</tr>
</tbody>
</table>
Ammonia Synthesis
Reforming
High Shift
Low Shift
Methanation
Feed Purification

LIFELINE

thank you all